Couverture de RFE_194

Article de revue

Quelle cible d’inflation pour les pays de l’UEMOA ?

Pages 71 à 112

Notes

  • [1]
    Union économique et monétaire ouest-africaine, regroupant le Bénin, le Burkina Faso, la Côte d’Ivoire, la Guinée Bissau (depuis 1997), le Mali, le Niger, le Sénégal et le Togo.
  • [2]
    En vue d’affiner la régulation conjoncturelle, il est aussi associé au niveau à partir duquel les effets de l’inflation sur l’activité économique deviennent négatifs.
  • [3]
    En supposant que la monnaie est un substitut au capital, le modèle de Tobin [1965] souligne un mécanisme de substitution de portefeuille par lequel l’inflation réduit le rendement de la détention d’encaisses réelles. Ainsi, Tobin soutient que l’inflation réduit le taux d’intérêt et, par conséquent, le coût d’opportunité à investir. Ce qui rend le capital plus attractif à détenir que la monnaie, poussant ainsi les individus à substituer la monnaie au capital. Compte tenu de la constance supposée du taux d’épargne par le modèle, cela se traduit par un accroissement de l’accumulation du capital qui entraîne une hausse de la production et, donc, la croissance économique.
  • [4]
    À travers un modèle d’optimisation inter-temporelle avec une offre de travail rigide où les encaisses réelles sont prises en compte dans la fonction d’utilité des agents, Sidrauski montre que le taux de croissance monétaire et le taux d’inflation n’ont aucun effet sur l’économie réelle, c’est-à-dire le stock de capital, la production et le taux d’intérêt réels.
  • [5]
    Stockman [1981] considère un modèle à encaisses préalables où la monnaie est complémentaire du capital et montre qu’une hausse de l’inflation se traduit par une baisse du niveau d’équilibre de la production. Il construit son argumentaire en supposant que les entreprises augmentent leurs encaisses pour le financement de leurs projets. Il modélise cet investissement numéraire comme une baisse anticipée des décisions de consommation et d’investissement. Quand le taux d’inflation augmente, les agents économiques sont contraints à réduire leurs achats de marchandises et leur détention de capital puisque l’inflation érode leur pouvoir d’achat. Par conséquent, la production d’équilibre diminue en réponse à la hausse du taux d’inflation qui, in fine, affecte négativement la croissance économique.
  • [6]
    Considérant les modèles AK, l’inflation agit comme une taxe sur le capital physique qui réduit le taux de rendement du capital qui, à son tour, réduit la croissance. Quant aux modèles AH, l’inflation agit comme une taxe sur le capital humain et affecte également le taux de croissance de la production : elle conduit à une substitution entre les biens et le loisir, ce qui abaisse le rendement du capital humain qui, à son tour, conduit à baisser le rendement sur tout le capital et donc le taux de croissance économique.
  • [7]
    Dans ce cadre, il montre que la hausse de l’inflation rend les prix relatifs plus volatils et les salaires réels plus variables pendant la période contractuelle parce que le salaire nominal est constant sur la période contractuelle alors que le niveau général des prix augmente graduellement dans le temps. Cette volatilité du salaire réel entraîne des fluctuations sur le marché de l’emploi qui sont susceptibles de se traduire par une baisse des rendements du travail, conduisant à une inefficacité sur le marché du travail, une réduction du produit marginal du capital et, par conséquent, à un ralentissement de la croissance économique.
  • [8]
    L’effet cyclique sur le marché du travail est dû au fait que les entreprises se substituent à différents types de travail parce que les agents appartenant à des cohortes différentes ont des salaires différents, certains d’entre eux étant liés à des contrats antérieurs.
  • [9]
    Dans les pays développés, les résultats concernant le taux optimal d’inflation ont été obtenus grâce aux simulations DSGE des modèles keynésiens et à la controverse autour de l’optimalité de « la règle de Friedman » (Schmitt-Grohé et Uribe [2010]). Ces études ont été faites à travers des modèles macroéconomiques dont certains sont à agent représentatif.
  • [10]
    La caractéristique essentielle de la méthode de Sarel [1996] est l’utilisation des moindres carrés ordinaires pour déterminer le point de rupture structurelle de la fonction qui relie la croissance économique et l’inflation. La méthode de Khan et Senhadji [2001] se caractérise essentiellement par la nature inconnue du seuil d’inflation et son estimation avec les autres paramètres de régression par les moindres carrés non linéaires.
  • [11]
    Notons que lorsque la variable seuil est plus petite que la valeur du seuil, le modèle estime l’équation (2). De manière similaire, lorsque la variable seuil est plus grande que le paramètre seuil, le modèle estime l’équation (3).
  • [12]
    Cela traduit un effet de type keynésien qui préconise l’existence d’une relation positive entre l’inflation et la croissance, de sorte que, même s’il y a une hausse des prix des biens suite à une politique monétaire expansionniste, la production ne devrait pas baisser car les producteurs doivent satisfaire les exigences de demande des consommateurs.
  • [13]
    Il traduit dans ce cas un effet de type monétariste qui considère que l’inflation est nuisible au progrès économique.
  • [14]
    L’hypothèse nulle d’absence d’effet de seuil (H0 : α1i = α2i avec i = 0,…,4) est testée contre l’hypothèse alternative ou l’effet de seuil est présent (H1 : α1iα2i). Les procédures classiques des tests d’hypothèses ne peuvent pas être appliquées car, sous l’hypothèse nulle d’absence d’effet de seuil, le paramètre seuil serait non identifié.
  • [15]
    Pour cela, il convient d’abord d’utiliser la statistique F1 pour évaluer l’hypothèse nulle d’absence de seuil. Si cette hypothèse nulle est rejetée, alors il existe au moins une valeur seuil. L’étape suivante consistera à tester l’hypothèse nulle d’un seuil contre deux seuils.
  • [16]
    Les résultats de ces tests ont montré que la croissance et l’inflation sont stationnaires en niveau pour tous les pays. Cependant, les autres variables sont pour la plupart des cas intégrées d’ordre 1. Ainsi, pour plus de simplicité et de cohérence et pour ne pas être confronté à des résultats erronés, toutes les variables ont été rendues stationnaires en tenant compte de leur différence première. Les résultats des tests de stationnarité sont présentés en annexe.
  • [17]
    La valeur critique du ratio de vraisemblance (7,35), qui est significative à 95 %, est représentée par la ligne horizontale de sorte que l’intervalle de confiance du seuil optimal d’inflation peut être lu à partir de l’endroit où la courbe du ratio de vraisemblance franchit la valeur critique.
  • [18]
    Les performances du modèle non linéaire sont nettement meilleures que celles du modèle linéaire. En effet, la significativité globale du modèle est meilleure sous la forme d’une spécification à deux régimes que sous la forme linéaire (voir R2 et « somme des carrés des résidus » des tableaux de résultats en annexe).
  • [19]
    Ce passage d’un régime à un autre pourrait être lisse dans ces pays. Selon Ben Salem et Perraudin [2001], les modèles à seuil à transition brutale sont un cas particulier des modèles à seuil à transition lisse proposés par Teräsvirta [1994].
  • [20]
    La valeur critique du ratio de vraisemblance (7,35), qui est significative à 95 %, est représentée par la ligne horizontale, de sorte que l’intervalle de confiance du seuil optimal d’inflation peut être lu à partir de l’endroit où la courbe du ratio de vraisemblance franchit la valeur critique.

1Depuis le 1er avril 2010, est entrée en vigueur une nouvelle réforme institutionnelle de l’UMOA et de la BCEAO. Bien qu’elle intègre depuis 1998 un objectif explicite d’inflation pour l’Union économique et monétaire ouest-africaine (UEMOA), la BCEAO s’est vu assigner, à travers cette réforme, un objectif explicite de stabilité des prix par les chefs d’État et de gouvernement de l’UEMOA. Cette réforme consolide l’indépendance de la BCEAO et lui donne les moyens de renforcer sa crédibilité et son efficacité. Ainsi, un comité de politique monétaire est créé pour définir la politique monétaire. Le comité de politique monétaire de la BCEAO a donné en septembre 2010 une définition chiffrée de la stabilité des prix. Il a retenu comme objectif un taux d’inflation en glissement annuel, compris entre 1 % et 3 % autour de 2 % pour un horizon de 24 mois. Dans ce contexte, la détermination d’une cible d’inflation pour la BCEAO est un important axe de recherche. Plus précisément, il est impératif de se poser la question de savoir si cette valeur autour de 2 % est nécessairement la cible appropriée à long terme pour les pays de l’UEMOA.

2Dans la littérature, le problème de la cible d’inflation est celui de la détermination du taux optimal d’inflation, qui a fait l’objet d’une attention considérable et donné lieu à d’intenses débats théoriques et empiriques.

3Le taux optimal d’inflation a pu être défini comme celui qui minimise la perte de bien-être en raison de la distorsion des préférences du public résultant de la taxe sur les encaisses monétaires (Drazen [1979], Yakita [1989]). Relativement récemment, il est apparu dans la littérature que la définition et les estimations du taux optimal d’inflation ne sont pas standard car elles dépendent fortement des hypothèses relatives au mécanisme de transmission retenu (Vaona et Schiado [2007], Pollin [2008], Schmitt-Grohé et Uribe [2011]). À un niveau macroéconomique, la définition le plus souvent retenue est celle qui soutient que le taux optimal d’inflation est le seuil d’inflation qui maximise l’activité économique [2], donc la croissance économique.

4Depuis longtemps, les économistes, les banquiers centraux ainsi que les praticiens des pays développés et des pays en développement ont cherché à comprendre la nature, l’intensité et les orientations des effets de l’inflation sur la croissance économique. La littérature théorique a identifié trois effets possibles qui sont positif, nul ou négatif (Powers [2005]). L’influence positive correspond à « l’effet Tobin » (Tobin [1965]) [3] alors que l’influence nulle correspond à la « super-neutralité » de la monnaie établie par Sidrauski [1967] [4] et la négative est appelée « effet inverse de Tobin » développé par Stockman [1981] [5]. Dans les modèles de croissance endogène, la relation entre l’inflation et la croissance est prise en compte via la productivité marginale du capital, soit le capital physique (modèles AK), soit le capital humain (modèles AH) soit les deux. Dans ce cadre, le taux d’inflation affecte le taux de croissance à travers son impact sur le taux de rendement du capital (Gillman et Kejak [2005]) [6]. Vaona [2012] fait la fusion d’un modèle de croissance endogène et d’un modèle néo-keynésien avec des salaires rigides pour soutenir que l’effet négatif de l’inflation sur la croissance peut aussi se faire indirectement sur le marché du travail [7].

5Même si ces trois types d’effets sont théoriquement possibles, les récents travaux empiriques ont développé l’argument selon lequel l’impact de l’inflation sur la croissance est non linéaire (Kan et Omay [2010]). Ceci repose sur l’idée que les effets de l’inflation sur la croissance sont liés au niveau qu’atteint l’inflation (Espinoza [2010], Lopez-Villavicencio et Mignon [2011] ; Bittencourt et al. [2013]). Ainsi, il existe un seuil d’inflation au-dessous duquel l’inflation affecte positivement la croissance et au-delà duquel elle a des effets négatifs sur l’activité économique bien que des seuils spécifiques par pays restent encore à déterminer. Les effets de l’inflation sur la croissance sont considérés comme positifs à des taux d’inflation modérés, fortement négatifs après certains seuils et faiblement négatifs pendant les épisodes d’hyperinflation (Kan et Omay [2010] et López-Villavicencio et Mignon [2011]). Ces non-linéarités sont sous-tendues par des effets d’accumulation et d’emplois cycliques (Graham et Snower [2004] ; Vaona [2012]). À faibles taux d’inflation, l’effet d’accumulation temporelle prévaut, conduisant à une offre de main-d’œuvre plus importante et, donc, à une accumulation de capital et à une croissance plus rapides. En revanche, à taux d’inflation élevés, l’effet d’emplois cycliques [8] est plus fort ; ce qui entraîne une demande de main-d’œuvre moindre et donc un ralentissement de la croissance.

6Ce seuil d’inflation, ou taux optimal, qui se trouve être la limite entre l’impact positif et l’impact négatif de l’inflation sur la croissance a fait l’objet d’une vaste littérature empirique. Fischer [1993] a été le premier à examiner la possibilité d’une non-linéarité dans la relation entre l’inflation et la croissance. Par la suite, beaucoup d’études ont essayé d’explorer ce volet de la littérature empirique (Sarel [1996], Khan et Senhadji [2001]). Au cours des dernières années, la plupart de ces études sont faites en données de panel dont certaines considèrent le cas où le passage d’un impact positif à un impact négatif est brusque (Bick [2010], Vinayagathasan [2013], Kremer et al. [2013], Baglan et Yoldas [2015], Arcade et al. [2016]), alors que pour d’autres la transition est lisse (Espinoza et al. [2010], Kan et Omay [2010], Ibarra et Trupkin [2016], Lopez-Villavicencio et Mignon [2011], Bittencourt et al. [2013], Eggoh et Khan [2014], Thanh [2015], Ndjokou et Tsopmo [2017]). Pour les pays de l’UEMOA, il y a très peu d’études qui mettent en évidence l’existence d’un effet non linéaire de l’inflation sur la croissance économique et déterminent le seuil d’inflation à partir duquel un arbitrage est effectif entre l’inflation et la croissance économique (Combey et Nubukpo [2011], Arcade et al. [2016]). Selon Combey et Nubukpo [2011], le seuil d’inflation dans la zone UEMOA est de 8,08 %. Cette valeur est totalement différente du seuil d’inflation de 1,03 % trouvé par Arcade et al. [2016].

7Dans les études en panel, il existe une hypothèse claire et explicite selon laquelle il y a une seule et unique rupture structurelle dans la relation entre l’inflation et la croissance économique pour tous les pays de l’échantillon, au-delà de laquelle l’inflation devient préjudiciable à la croissance économique. Sepehri et Moshiri [2004] ont fait valoir qu’il n’est pas approprié d’imposer une relation unique en « U inversé » entre des pays ayant des niveaux de développement différents ainsi que des institutions et des normes sociales différentes. De ce fait, une partie de la littérature récente se concentre spécialement sur des études par pays pour tester l’existence d’un effet de seuil dans la relation entre l’inflation et la croissance économique. Selon Kremer et al. [2013], les seuils d’inflation pourraient être spécifiques aux caractéristiques de chaque pays. Les études par pays ayant cherché la non-linéarité dans la relation entre l’inflation et la croissance, ont surtout concerné les pays en développement [9].

8La plupart de ces études utilisent soit la méthode de Sarel [1996] soit celle de Khan et Senhadji [2001] [10]. Ainsi, au Pakistan, bien que Hussain et Malick [2011] aient récemment suggéré un taux optimal d’inflation unique de 9 %, Hussain [2005] avait estimé que le taux optimal d’inflation au Pakistan se situe dans un intervalle de 4 à 6 % alors que Nasir et Saima [2010] trouvent deux taux optima d’inflation que sont 6 % et 11 %. En utilisant trois différentes méthodologies proposées par Sarel [1996], Khan et Senhadji [2001] et Espinoza [2010], Mohanty et al. [2011] trouvent que le seuil d’inflation en Inde se situe entre 4 et 5,5 %. Ce résultat est presque identique au seuil de 6 % trouvé par Sing [2010] qui plaide pour le maintien du taux d’inflation au-dessous de 6 % pour un taux de croissance soutenu de la production dans l’économie indienne. Les mêmes techniques ont été utilisées par Bhusal et Silpakar [2011] qui montrent que le taux optimal d’inflation est égal à 6 % au Népal et par Hasanov [2011] pour qui le seuil d’inflation en Azerbaïdjan se trouve à 13 %. En utilisant la méthode de Sarel [1996], Marbuah [2011] indique un seuil d’inflation de 10 % au Ghana alors que Ahortor et al. [2011] trouvent à travers la méthode de Khan et Senhadji que le seuil optimal d’inflation au Ghana se situe entre 6 et 12 %. Ces derniers montrent que le seuil d’inflation est compris entre 9 et 14 % au Nigéria. Ce résultat a été confirmé par Bawa et Abdullahi [2012] qui indiquent un seuil optimal d’inflation de 13 % pour le Nigéria. Ce taux optimal d’inflation est supérieur à ceux de 8 % et de 7 % établis par Kelikume et Salami [2010].

9D’autres études ont utilisé la méthode à effet de seuil de Hansen pour déterminer de façon endogène le taux optimal d’inflation. Ainsi, en Malaisie, Furuoka et al. [2009] montrent que le seuil optimal d’inflation se situe à 3,9 %, une valeur au-dessus de laquelle l’inflation retarde significativement la croissance de la production. En outre, ils montrent qu’en-dessous de ce seuil la relation positive entre l’inflation et la croissance est statistiquement significative. La même méthode avait été utilisée par Lee et Wong [2005] pour une approche par pays du seuil optimal d’inflation pour Taïwan et le Japon pendant la période 1965-2002. Leurs estimations suggèrent qu’un taux d’inflation supérieur à 7,2 % est néfaste à la croissance économique de Taïwan. D’autre part, ils trouvent deux niveaux seuils pour le Japon, qui sont 2,5 % et 9,7 %. Ils indiquent qu’un taux d’inflation en dessous du niveau estimé de 9,7 % est favorable à la croissance économique et qu’au-delà de cette valeur seuil il lui est nuisible.

10À notre connaissance, il apparaît ainsi qu’il n’existe aucune étude sur le seuil optimal d’inflation qui utilise une approche par pays dans la zone UEMOA. Cet article s’inscrit dans l’objectif de combler ce manque en déterminant un seuil inflationniste pouvant servir d’une cible d’inflation pour l’orientation de la politique monétaire dans les pays de l’UEMOA. Dans cette perspective, nous utilisons la méthode à effet de seuil développée par Hansen [1996, 2000] qui permet la détermination endogène du taux d’inflation optimal.

11Cet article est structuré de la manière suivante. La première section présente la méthodologie d’estimation du seuil optimal d’inflation et les données utilisées. Les caractéristiques du seuil optimal d’inflation pour chacun des pays sont examinées dans la deuxième section et enfin, la troisième section conclut.

Estimation économétrique d’un taux optimal d’inflation

12Dans les pays de l’UEMOA, une inflation contenue et une croissance faible du PIB réel par tête sont les principales caractéristiques des performances macroéconomiques (tableau n°1 ci-dessous).

Tableau 1

Niveau moyen de croissance du PIB réel par tête et d’inflation dans les pays de l’UEMOA

Tableau 1
Bénin B. Faso C. d’Ivoire Mali Niger Sénégal Togo Croissance du PIB réel par tête 1,08 2,06 -0,98 1,32 -0,79 0,45 -0,10 Inflation 3,88 3,59 4,59 3,70 3,10 3,82 4,45

Niveau moyen de croissance du PIB réel par tête et d’inflation dans les pays de l’UEMOA

Source : calculs de l’auteur.

13Sur la période 1980-2016, les pays de l’UEMOA présentent des divergences en termes de taux d’inflation et de croissance économique. Les taux d’inflation moyens ont varié d’un pays à l’autre. Le taux d’inflation le plus faible a été enregistré au Niger à 3,06 % tandis que les taux les plus élevés ont été observés au Togo à 4,45 % et en Côte d’Ivoire à 4,59 %. Pour les autres pays, les taux d’inflation moyens sont presque identiques. Le Burkina Faso a un taux d’inflation moyen de 3,59 %. Ce niveau est légèrement plus faible que celui de 3,70 % trouvé au Mali et ceux de 3,82 % et 3,88 % constatés respectivement au Sénégal et au Bénin. Les expériences de croissance ont également été différentes. Le taux de croissance du PIB réel par tête le plus faible a été enregistré par la Côte d’Ivoire à -0,98 % alors que le taux le plus élevé a été observé au Burkina Faso à 2,06 %. Le Sénégal, le Bénin et le Mali sont parvenus à obtenir un taux de croissance respectivement de 0,45 % à 1,08 % et 1,32 %. Ces taux sont meilleurs que celui de -0,79 % constaté au Niger et de -0,10 % trouvé au Togo.

14D’autre part, les combinaisons d’inflation et de croissance économique pour chacun des pays de l’UEMOA montrent que le lien entre ces deux variables n’est pas linéaire (figure n°1, en annexe). Pour certaines années, l’inflation et la croissance sont positivement corrélées, alors que pour d’autres elles évoluent en sens inverse. Cela évoque la possibilité d’un seuil dans la relation entre l’inflation et la croissance économique, qui pourrait être un taux optimal d’inflation.

Méthodologie d’estimation

15La détermination du taux optimal d’inflation se fait à travers une relation entre l’inflation et la croissance. Sachant que notre objectif est de déterminer un seuil d’inflation endogène par pays, nous spécifions une équation simple et identique à celle de Lee et Wong [2005] et Furuoka et al. [2009]. Soit donc l’équation réduite suivante :

17growtht représente le taux de croissance du PIB réel par tête, inft représente le taux d’inflation obtenu à partir de l’IPC, invt représente la variation du taux d’investissement mesuré par le niveau d’investissement en pourcentage du PIB réel, opent représente la variation du degré d’ouverture commerciale mesuré par le rapport de la somme des exportations et des importations sur le PIB réel, fint représente la variation du niveau de développement financier, govt est la part des dépenses de l’administration publique sur le PIB et εt représente le terme d’erreur.

18Pour l’estimation d’effets de seuil, nous nous appuyons sur Hansen [1996, 2000]. Plus précisément, nous considérons une équation structurelle à deux régimes dans un modèle TAR :

20qt représente la variable seuil, divisant toutes les valeurs observées en deux régimes. Les termes yt et xt sont respectivement la variable dépendante et l’ensemble des variables explicatives, eit est le terme d’erreur et γ est la valeur du seuil. Si nous connaissions γ, le modèle pourrait facilement être estimé par les MCO. Puisque le seuil est inconnu a priori, il devrait être estimé en plus des autres paramètres [11].

21En définissant dt ={qt ≤ γ} ou {.}, nous pouvons avoir une fonction indicatrice dt, avec d = 1 si qt ≤ γ ou d = 0 autrement. Soit xt (γ) = xt dt (γ),on peut réécrire les équations (2) et (3) comme une équation simple :

23θ = θ2, δ = θ1 + θ2 et θ, δ et γ sont les paramètres de la régression à estimer. La somme des carrés des résidus comme un résultat de l’estimation des paramètres de la régression peut être écrite comme suit :

25Hansen [2000] recommande d’estimer γ par la technique des moindres carrés ordinaires. La manière la plus facile pour mettre en œuvre cette procédure est de minimiser la somme des carrés des résidus comme une fonction qui dépend du seuil. Ainsi, la valeur optimale du seuil peut s’écrire comme suit :

27Avec des conditions sur equation im7, l’équation (4) est linéaire en θ et en δ, donnant les estimations conditionnelles des MCO de equation im8 et de equation im9 par la régression de la variable dépendante sur les variables explicatives.

28Suivant la procédure précédente, l’équation linéaire (1) peut être exprimée comme une équation non linéaire sous un modèle TAR à deux régimes comme suit :

30Dans l’estimation de l’équation (5), la valeur optimale du seuil est obtenue par la détermination de la valeur seuil qui minimise la somme des carrés des résidus (RSS).

31Dans cet article, le taux d’inflation est utilisé comme variable seuil dans l’analyse. La spécification ci-dessus met en exergue un régime dit normal pour lequel l’inflation est inférieure au seuil et un régime dit critique pour lequel l’inflation est supérieure au seuil. En régime normal, l’impact de l’inflation sur la croissance économique est supposé positif (α11 > 0) [12] alors qu’en régime critique, l’impact de l’inflation sur la croissance est supposé négatif (α21 < 0) [13].

32Pour pouvoir utiliser les moindres carrés par régime, le taux d’inflation retardé d’une période est utilisé comme variable de transition dans l’analyse. Ainsi, l’équation (7) devient :

34La principale question dans l’équation (8) est de savoir s’il existe, ou non, un effet de seuil. Cela nécessite la comparaison entre le modèle linéaire et le modèle à deux régimes (équation (8)) [14]. Pour cela, Hansen [1996] propose une méthode de « bootstrap » d’hétéroscédasticité du multiplicateur lagrangien pour calculer la valeur asymptotique critique et la p-value. Pour accomplir ceci, un test avec une puissance quasi optimale contre les alternatives éloignées de H0 est le F-statistic classique :

36S0 et S1 sont la somme des carrés des résidus sous l’hypothèse nulle et l’alternative de H0 : α1i = α2i et equation im13 est la variance résiduelle définie comme :

38Hansen [1996] montre que la procédure de « bootstrap » atteint la distribution asymptotique de premier ordre de telle sorte que les p-values construits à partir du « bootstrap » sont asymptotiquement valides.

39Ayant estimé l’effet de seuil, l’étape suivante consiste à déterminer si l’estimation est statistiquement significative, c’est-à-dire H1 : α1iα2i. Hansen [2000] propose une technique de « bootstrap » pour simuler la distribution empirique du test de ratio de vraisemblance suivant :

41S1 (γ) et S1 equation im16 sont les sommes des carrés des résidus sous H0 : γ = γ0 et H1 : γ ≠ γ0 respectivement et equation im17 est la variance des résidus, avec equation im18. L’hypothèse nulle est à rejeter pour des valeurs élevées de LR10). En plus, Hansen [2000] a montré que les statistiques LR10) ne sont pas normalement distribuées et a calculé des intervalles de confiance asymptotiques valides sur les valeurs estimées du seuil en utilisant leur intervalle de non-rejet :

43β est un niveau asymptotique donné et la région de non-rejet du niveau de confiance est 1 - β, c’est-à-dire si LR10) ≤ c (β) alors l’hypothèse nulle de H0 : γ = γ0 ne peut pas être rejetée.

44À côté du test sur l’existence d’une valeur seuil, l’autre étape vérifie s’il existe deux ou plus de deux valeurs seuils [15]. Dans ce cadre, nous supposons que γ1 est connu et nous cherchons le deuxième seuil γ2. Ainsi, nous obtenons l’équation suivante :

46La valeur seuil, l’hypothèse nulle et la statistique de Fischer se présentent comme suit :

48H0 : un seul seuil ;

50S1 equation im23 représente la somme des carrés des erreurs obtenue lors de la première estimation de seuil. La variance résiduelle est donnée par :

52La significativité de F2 implique le rejet de l’hypothèse nulle d’un seuil et que deux seuils sont prévus. Si les deux seuils ne sont pas rejetés, alors l’intervalle de confiance pour les deux seuils (γ1, γ2) peut être construit de la même manière. Les procédures précédentes sont appliquées jusqu’à ce que l’hypothèse nulle ne puisse plus être rejetée.

Description et stationnarité des données

53Dans cet article, la croissance économique est représentée par le taux de croissance annuel du PIB par tête alors que l’inflation est représentée par le taux de croissance annuel de l’indice des prix à la consommation. À côté du taux d’inflation qui se trouve être la variable d’intérêt et la variable seuil, un ensemble de variables qui sont des déterminants importants de la croissance a été utilisé comme des variables de contrôle. Il s’agit du taux d’investissement, du degré d’ouverture commerciale, du niveau de développement financier et de la part des dépenses du gouvernement sur le PIB réel.

54Le taux d’investissement, défini comme étant la part du niveau d’investissement sur le PIB réel, représente l’accumulation de capital, plus de capital conduisant à un niveau plus élevé de production. Le degré d’ouverture commerciale est mesuré par le ratio de la somme des exportations et des importations sur le PIB réel. Comme discuté par Edwards [1993], la littérature sur la croissance endogène soutient que les économies les plus ouvertes aux échanges internationaux peuvent croître plus rapidement en élargissant leur marché. Par conséquent, le coefficient associé à cette variable devrait être positif. Cependant, en raison de la faible industrialisation des économies de l’UEMOA qui pourrait se traduire par une forte dépendance étrangère, surtout en produits énergétiques, ce coefficient peut aussi être négatif. Le niveau de développement financier est mesuré par les crédits faits au secteur privé, exprimé en pourcentage du PIB réel. En effet, le développement financier joue un rôle important dans le processus de croissance (King et Levine [1993]). La part des dépenses du gouvernement sur le PIB réel représente d’abord l’impact positif keynésien mais peut aussi être utilisée comme un indicateur d’instabilité macroéconomique. Dans cette dernière optique, les dépenses du gouvernement captent les dépenses publiques qui n’affectent pas directement la productivité mais entraînent des distorsions sur les décisions privées (Barro et Sala-i-Martin [1995]) et rendraient compte d’une relation négative entre l’instabilité macroéconomique et l’activité économique (Fischer [1993]).

55Les données sont annuelles et proviennent principalement des WDI de la Banque mondiale à l’exception du taux d’investissement qui provient des WEO du Fonds monétaire international. Avant d’entamer les estimations, des tests de stationnarité ont été effectués sur l’ensemble des variables pour tous les pays (tableau n°5, en annexe) [16].

Résultats empiriques

56Cette section présente les caractéristiques du taux optimal d’inflation dans les pays de l’UEMOA.

L’identification du seuil optimal d’inflation

57L’estimation de γ par les moindres carrés ordinaires est, pour chaque pays, la valeur qui minimise la séquence du ratio de vraisemblance. Cette valeur correspond au point de contact entre la courbe du ratio de vraisemblance et l’axe des abscisses. Les figures (en annexe, seuil 1 pour chaque pays) [17] et le tableau n°6 (en annexe, colonnes 2 et 3) représentent les séquences de ratio de vraisemblance LR en fonction de toutes les valeurs possibles de seuil d’inflation ainsi que les intervalles de confiance.

58Ainsi, le seuil optimal d’inflation se trouverait à 0,4 % pour le Bénin, à 4,3 % pour le Burkina Faso, à 6,9 % pour la Côte d’Ivoire, à 5,4 % pour le Mali, à -1,6 % pour le Niger, à 6,2 % pour le Sénégal et à 7,5 % pour le Togo. Il ressort de ces estimations qu’aucun des pays de l’UEMOA ne semble avoir un taux optimal d’inflation identique à la cible de 2 % définie par le comité de politique monétaire de la BCEAO. À l’exception du Bénin et du Niger pour lesquels la déflation apparaîtrait optimale, tous les autres pays auraient un taux optimal d’inflation supérieur à la cible de la BCEAO.

59Bien que la détermination du seuil optimal d’inflation soit en faveur d’une spécification à deux régimes [18], les intervalles de confiance sont assez larges surtout pour le Bénin, le Burkina Faso, le Mali, le Sénégal et le Togo, alors que pour la Côte d’Ivoire et le Niger le seuil d’inflation obtenu correspond à une borne de l’intervalle de confiance. Ceci montre l’existence d’incertitudes considérables sur la valeur du seuil d’inflation dans ces pays.

60Après avoir identifié le seuil optimal d’inflation, il convient de voir s’il existe des effets de seuil. Il s’agit donc de tester l’hypothèse nulle d’absence d’effet de seuil (H0 : α1i = α2i avec i = 0,…,5) contre son alternatif (H1 : α1iα2i).

61En utilisant 10 000 réplications de « bootstrap », les valeurs du test F sont associées à des p-values qui sont significatives à 99 % pour la Côte d’Ivoire et le Mali, marginalement significatives à 80 % pour le Bénin et le Burkina Faso et non significatives pour le Niger, le Sénégal et le Togo (tableau n°7, colonnes 2 et 3, en annexe). Ceci suggère une non-linéarité dans la relation entre la croissance économique et l’inflation au Bénin, au Burkina Faso, en Côte d’Ivoire et au Mali ; impliquant que le passage d’un régime à un autre semble être brusque. Pour le Niger, le Sénégal et le Togo en revanche, ces résultats signifient une absence de non-linéarité dans la relation entre la croissance économique et l’inflation pouvant plus précisément traduire que le passage d’un régime à un autre n’est pas brusque [19].

62En fixant les seuils à ces niveaux pour chacun des pays et divisant l’échantillon en deux en fonction de l’inflation, nous pouvons mécaniquement effectuer la même analyse sous chaque sous-échantillon. Il est clair que ces résultats s’étendent à des procédures de recherche d’un deuxième seuil. Environ 8 à 14 observations sont supérieures au seuil à l’exception du Bénin et du Niger où 8 observations sont inférieures au seuil. De la sorte, il n’est plus possible de diviser ces sous-échantillons. Parmi les 23 à 29 observations restantes selon les pays dont l’inflation est inférieure ou supérieure au seuil, la recherche d’un deuxième seuil donne les séquences de ratio de vraisemblance LR, identifiant les seuils et les intervalles de confiance (figure n°2, en annexe, seuil 2 pour chaque pays ; tableau n°6, en annexe, colonnes 4 et 5) [20].

63Ce tableau montre que les seuils seraient estimés à 1,3 % pour le Bénin, 1,6 % pour le Burkina Faso, 1,3 % pour la Côte d’Ivoire, 1,8 % pour le Mali, 4 % pour le Niger, 0 % pour le Sénégal et 0,4 % pour le Togo. Il apparaît ainsi que le Bénin, le Burkina Faso, la Côte d’Ivoire et le Mali présentent des seuils qui sont proches de la cible de 2 % définie par les autorités monétaires de l’union. Ceux du Sénégal et du Togo sont très en deçà de cette cible alors que celui du Niger est supérieur à la cible. D’autre part, les intervalles de confiance sont assez étroits. Ceci permet d’espérer une certaine précision dans l’estimation de ces deuxièmes seuils.

64Les résultats des tests de linéarité pour le deuxième seuil d’inflation dans les pays de l’UEMOA, en utilisant comme précédemment 10 000 réplications de « bootstrap », montrent que les valeurs du test F sont associées avec des p-values qui sont significatives à 99 % pour le Mali, à 95 % pour le Niger et le Togo, à 90 % pour la Côte d’Ivoire, autour de 80 % pour le Sénégal, et non significatives pour le Bénin et le Burkina Faso (tableau n°7, colonnes 4 et 5, en annexe). Ces résultats révèlent au moins une non-linéarité significative en Côte d’Ivoire, au Mali, au Niger au Sénégal et au Togo. Dans ces pays, ceci décrit un passage brusque d’un régime à un autre ; contrairement au Bénin et au Burkina Faso où l’absence de significativité dans la non-linéarité pourrait montrer une transition non brusque d’un régime à un autre.

65Sachant que la méthode de Hansen détermine un seuil même en l’absence de non-linéarité, il est possible de retenir l’existence d’un effet de seuil entre la croissance économique et l’inflation pour tous les pays de l’UEMOA. Les résultats qui prennent en compte deux seuils (seuil bas et seuil haut) seront examinés dans la sous-section suivante pour les pays de l’union.

Relation entre inflation et croissance économique

66Les tableaux n°8 à 14 (en annexe) fournissent les résultats de l’estimation du modèle à effet de seuil d’inflation pour les pays de l’UEMOA pendant la période 1980-2016. À des fins de comparaison, la première colonne montre les estimations du modèle linéaire qui ignore les seuils optimaux d’inflation alors que les autres colonnes présentent les résultats du modèle avec les seuils d’inflation. Les seuils ont été disposés de façon croissante permettant de distinguer un régime de faible inflation (en-dessous du seuil bas), un régime d’inflation modérée (entre le seuil bas et le seuil haut) et un régime de forte inflation (au-delà du seuil haut).

67Avant de passer à l’examen des résultats, nous analysons d’abord les biais potentiels entraînés par la présence de la variable de transition comme régresseur. À cette fin, des tests d’exogénéité de Wald ont été effectués sur la variable « inflation » (tableau n°15, en annexe). Cette procédure fournit des statistiques de Fischer et de Khi-deux dont les valeurs présentent des probabilités supérieures à 0,05. Ceci indique l’exogénéité de l’inflation par rapport à la croissance économique dans les pays de l’UEMOA.

68Il ressort des tableaux de résultats que dans le modèle linéaire, l’inflation aurait un effet non significatif dans tous les pays à l’exception de la Côte d’Ivoire et du Sénégal où la significativité serait de l’ordre respectivement de 80 % et 90 %. Plus précisément, les coefficients associés à l’inflation sont estimés à -0,25 et -0,15. Cela traduit qu’une inflation de 1 % réduirait la croissance du PIB réel par tête de 0,25 % en Côte d’Ivoire et de 0,15 % au Sénégal. En revanche dans la spécification à effet de seuil, l’impact de l’inflation dépend de son niveau.

69Nous concentrant, à titre d’exemple, sur le cas du Burkina-Faso, l’inflation semble être favorable à la croissance lorsqu’elle y est inférieure à 1,6 %, lui apparaît néfaste à la croissance lorsque son niveau est compris entre 1,6 et 4,3 %, semble y avoir des effets de neutralité sur la croissance au-delà de 4,3 %. Lorsqu’elle est inférieure à 1,6 %, plus d’inflation semble être favorable à la croissance, mais lorsqu’elle est supérieure à ce seuil son accroissement se traduirait par une baisse de la croissance de l’ordre de 0,15 %, tant qu’elle n’atteint pas le seuil de 4,3 %.

70D’autre part, l’inflation semble avoir des effets de neutralité sur la croissance au-delà de 4,3 % au Burkina Faso, entre 1,3 et 6,9 % en Côte d’Ivoire, entre 1,8 et 5,4 % au Mali, en-dessous de 4 % au Niger et entre 0 et 6,2 % au Sénégal.

71On peut se reporter au tableau n°2 pour une synthèse des résultats du modèle non linéaire concernant la relation inflation/croissance.

Inflation optimale pour les pays de l’UEMOA

72Les résultats sur le seuil optimal d’inflation ont d’importantes implications pour les pays de l’UEMOA surtout dans le contexte actuel d’un objectif d’inflation de 2 % défini par le comité de politique monétaire de la BCEAO. Cet objectif peut constituer une contrainte en termes de croissance pour tout pays dont le seuil optimal d’inflation est différent de 2 %. Les pertes potentielles sont consignées dans le tableau ci-dessous :

Tableau 2

Inflation optimale pour les pays de l’UEMOA

Tableau 2
Coefficient en-dessous du seuil Seuil bas Coefficient inter-seuil Seuil haut Coefficient au-dessus du seuil Inflation optimale au sens du modèle Perte par rapport à 2% Bénin -0,22 0,4 0,75 1,3 0,23 Infinie B. Faso 0,61 1,6 -0,15 4,3 0,0 1,6 0,06 C. d’Ivoire 2,7 1,3 0,0 6,9 -3,3 Entre 1,3 et 6,9 0 Mali 0,6 1,8 0,0 5,4 -0,26 Entre 1,8 et 5,4 0 Niger 0,0 -1,6 0,0 4,0 -0,5 Inférieure à 4,0 0 Sénégal 0,5 0,0 0,0 6,2 -0,6 Entre 0 et 6,2 0 Togo 4,4 0,4 0,5 7,5 -0,4 7,5 2,75

Inflation optimale pour les pays de l’UEMOA

Source : estimations de l’auteur.

73Ce tableau tient compte du fait qu’apparaissent des intervalles d’impacts positifs de l’inflation sur la croissance économique et d’autres de neutralité de ces impacts de l’inflation. En effet, quand le coefficient en-dessous du seuil bas ou interseuil est positif ou nul, l’inflation contribue à une croissance plus élevée ou l’effet de l’inflation sur la croissance est nul. La BCEAO peut choisir son taux d’inflation cible dans l’intervalle correspondant à un impact positif ou nul de l’inflation sur la croissance économique. Ainsi :

  • dans le cas du Bénin, une inflation trop faible est un obstacle à la croissance. Au-delà du seuil bas de 0,4 %, l’inflation et la croissance économique sont positivement corrélées, la hausse de la croissance associée à celle de l’inflation étant plus importante en-dessous du seuil haut de 1,3 % qu’au-delà de celui-ci. Dans ce cas, le modèle ne définit pas de taux optimal d’inflation. Pris à la lettre, il dirait que le Bénin, en se calant sur l’objectif commun de 2 % perdrait 0,23 point de croissance par point d’inflation auquel il renonce ;
  • au Burkina Faso, lorsque l’inflation est inférieure au seuil bas 1,6 %, le coefficient de l’inflation est positif, suggérant qu’alors la hausse de l’inflation est favorable à la croissance. Une cible d’inflation de 1,6 % semble optimale au Burkina Faso ; le taux objectif de 2 %, n’y impliquant, au sens du modèle, qu’une faible perte de croissance ;
  • en Côte d’Ivoire et au Mali, quand l’inflation est inférieure au seuil bas respectivement de 1,3 et 1,8 %, le coefficient sur l’inflation est positif, suggérant qu’à ces niveaux faibles, la hausse de l’inflation est favorable à la croissance. On note, par ailleurs, que jusqu’à 6,9 % en Côte d’Ivoire et 5,4 % au Mali, l’effet de l’inflation sur l’activité économique est nul : le relèvement de l’objectif d’inflation jusqu’à 6,9 % et 5,4 % ne serait pas nuisible dans ces pays, dans le cadre de la modélisation testée. De ce fait, la Banque centrale pourrait chercher à atteindre une cible d’inflation de 1,3 % en Côte d’Ivoire et 1,8 % au Mali, mais l’application de l’objectif de la BCEAO ne semble pas entraîner de perte de croissance dans ces deux pays ;
  • dans le cas du Sénégal, une inflation nulle est favorable à la croissance économique. Au Sénégal la stabilité des prix apparaît optimale pour la croissance. Toutefois, le choix d’une inflation optimale nulle pourrait être confronté à la conviction de responsables politiques selon laquelle le taux d’inflation optimal doit être supérieur à zéro pour assurer que les taux d’intérêt nominaux ne se retrouvent pas à leur limite inférieure de zéro. Sachant que l’effet de l’inflation sur l’activité économique est nul jusqu’à 6,2 % au Sénégal, un objectif d’inflation compris entre 0 et 6,2 % serait alors envisageable. Ainsi, l’application de l’objectif de 2 % ne semble pas être une perte pour le Sénégal ;
  • pour le Niger, l’inflation n’a aucun effet significatif sur la croissance économique en-dessous du seuil bas correspondant à une déflation de 1,6 % et entre les seuils ; ce qui reflète une neutralité de l’inflation sur la croissance lorsque l’inflation est inférieure au seuil haut de 4 %. Comme pour le Sénégal, la BCEAO pourrait choisir son taux d’inflation cible dans l’intervalle où l’effet de l’inflation sur la croissance est nul. De ce fait, l’engagement de la BCEAO pour un objectif d’inflation positif jusqu’au seuil de 4 % ne semble pas nuire l’activité économique au Niger, l’application de l’objectif de 2 % n’y impliquant aucune perte ;
  • concernant le Togo, il existe une relation positive et significative entre l’inflation et la croissance économique jusqu’à un seuil de 7,5 %, l’amélioration de la croissance à la suite d’une hausse des prix étant plus marquée en-dessous du seuil bas de 0,4 % qu’au-dessus. Même une inflation supérieure à l’objectif de 2 % est favorable à la croissance économique. Ainsi, toujours au sens du modèle proposé et testé, cet objectif d’inflation définie par la BCEAO constituerait une contrainte pour le Togo qui pourrait subir une perte estimée autour de 2,75 % de croissance du PIB par tête.

74En vue de contribuer à la détermination d’un objectif d’inflation convenant aux pays d’Afrique de l’Ouest, objectif à définir par la Banque centrale des États de l’Afrique de l’Ouest, nous avons étudié la relation entre l’inflation et la croissance pour chacun des pays de l’union. Pour cela, nous avons utilisé la méthode de régression à effet de seuil développée par Hansen [1996, 2000], dont un élément essentiel est la détermination endogène du seuil d’inflation.

75À partir des données annuelles couvrant la période 1980-2016, il semble que l’effet de l’inflation sur la croissance économique soit non linéaire dans les pays de l’UEMOA. Les résultats montrent qu’à l’exception du Togo, l’objectif d’inflation de 2 % défini par le comité de politique monétaire de la BCEAO est compatible ou proche avec les taux d’inflation optimaux trouvés pour le Burkina Faso, la Côte d’Ivoire, le Mali, le Niger et le Sénégal. Pour le Bénin, nous observons un faible rendement d’une inflation supplémentaire au-delà du seuil de 1,3 %.

76Les résultats semblent suggérer que les pertes de croissance susceptibles d’être engendrées par l’utilisation de la cible de 2 % en lieu et place du taux optimal d’inflation seraient nulles dans tous les pays de l’union, à l’exception du Togo qui sacrifierait environ 2,75 % de croissance du PIB réel par tête. À l’élucidation près du cas du Togo, ces résultats semblent montrer que l’approche de la BCEAO est globalement pertinente.

77Le taux optimal apparaît différent d’un pays à l’autre. Cette différence de taux d’inflation optimal des pays de l’UEMOA pourrait s’expliquer par une différence des systèmes productifs, des structures financières, des institutions et des normes sociales. Ceci renvoie aux limites de cet article et suggère des orientations possibles pour les travaux futurs. Tout d’abord, l’article ne propose pas de modèle macro-économique structurel ni de la zone, ni d’aucun de ses pays. Le modèle de croissance retenu est certes admissible, mais n’épuise pas la question. Donc, des recherches futures pourraient reposer sur un modèle spécifique de l’union ainsi que de ses membres. Plus particulièrement, il s’agira de tester la solidité des résultats en retenant ou en incluant d’autres variables ou encore en faisant des croisements entre ces variables. D’autre part, il y a une seule politique monétaire dans l’union et la Banque centrale doit viser un seul objectif. Donc, il est nécessaire de déterminer le niveau optimal de l’inflation pour l’UEMOA dans son ensemble. De ce fait, une estimation portant sur l’agrégat « zone BCEAO » serait une opportunité. Enfin, la méthode utilisée pour la détermination du seuil d’inflation est à transition brusque. Ainsi, des recherches ultérieures pourraient utiliser des méthodes à transition lisse dont la plus récente est celle en panel.

L’auteur remercie très sincèrement les référés anonymes de la RFE pour leurs remarques et suggestions qui lui ont permis de bonifier davantage ce travail. Il reste seul responsable d’éventuelles erreurs ou omissions. Les vues exprimées ici sont les siennes et n’engagent en aucune façon le Laboratoire de recherche en économie de Saint-Louis (LARES) et le Laboratoire d’économie d’Orléans (LEO).

Annexe
Figure 1

Relations entre la croissance du PIB réel par tête et l’inflation dans les pays de l’UEMOA

Figure 1

Relations entre la croissance du PIB réel par tête et l’inflation dans les pays de l’UEMOA

Source : WDI [2017], Banque mondiale.
Tableau 5

Tests de stationnarité sur les variables

PaysVariablesAugmented Dickey-Fuller (constante)Phillips-Perron (constante)
sans tendanceavec tendancesans tendanceavec tendance
BéninCroissance du PIB par tête-6,187***(0)-6,129***(0)-6,187***(0)-6,129***(0)
Inflation-5,144***(0)-5,081***(0)-5,144***(0)-5,081***(0)
Développement financier-1,979 (3)-2,775 (3)-6,752***(3)-7,091***(3)
Dépenses publiques-6,783***(0)-6,984***(0)-6,783***(0)-6,984***(0)
Ouverture commerciale-6,781***(0)-6,751***(0)-6,781***(0)-6,751***(0)
Taux d’investissement-8,248***(0)-8,155***(0)-8,248***(0)-8,155***(0)
Burkina FasoCroissance du PIB par tête-6,589***(0)-6,860***(0)-6,589***(0)-6,860***(0)
Inflation-4,964***(0)-5,057***(0)-4,964***(0)-5,057***(0)
Développement financier-4,677***(0)-5,134***(0)-4,677***(0)-5,134***(0)
Dépenses publiques-3,472***(2)-3,751** (2)-6,732***(2)-7,135***(2)
Ouverture commerciale-4,709***(0)-4,930***(0)-4,709***(0)-4,930***(0)
Taux d’investissement-5,759***(1)-5,695***(1)-8,266***(1)-8,181***(1)
Côte d’IvoireCroissance du PIB par tête-2,420 (1)-3,190* (1)-4,578***(1)-5,045***(1)
Inflation-3,747***(1)-4,168***(0)-4,423***(1)-4,718***(1)
Développement financier-4,673***(0)-5,041***(0)-4,673***(0)-5,041***(0)
Dépenses publiques-6,264***(0)-6,202***(0)-6,264***(0)-6,202***(0)
Ouverture commerciale-4,970***(0)-4,956***(0)-4,970***(0)-4,956***(0)
Taux d’investissement-6,817***(0)-7,501***(0)-6,817***(0)-7,501***(0)
MaliCroissance du PIB par tête-7,374***(0)-7,491***(0)-7,374***(0)-7,491***(0)
Inflation-4,989***(0)-4,955***(0)-4,989***(0)-4,955***(0)
Développement financier-6,035***(0)-7,049***(0)-6,035***(0)-7,049***(0)
Dépenses publiques-7,914***(0)-7,807***(0)-7,914***(0)-7,807***(0)
Ouverture commerciale-4,377***(1)-4,537***(1)-8,200***(1)-8,315***(0)
Taux d’investissement-8,196***(0)-8,212***(0)-8,196***(0)-8,212***(0)
NigerCroissance du PIB par tête-5,622***(0)-7,051***(0)-5,622***(0)-7,051***(0)
Inflation-4,463***(0)-4,424***(0)-4,463***(0)-4,424***(0)
Développement financier-4,761***(0)-5,183***(0)-4,761***(0)-5,183***(0)
Dépenses publiques-7,676***(0)-7,587***(0)-7,676***(0)-7,587***(0)
Ouverture commerciale-5,964***(0)-6,337***(0)-5,964***(0)-6,337***(0)
Taux d’investissement-6,444***(0)-7,275***(0)-6,003***(0)-6,111***(0)
SénégalCroissance du PIB par tête-7,230***(0)-7,929***(0)-7,230***(0)-7,929***(0)
Inflation-3,213**(1)-3,663**(1)-4,191***(1)-4,592***(1)
Développement financier-5,220***(0)-6,017***(0)-5,220***(0)-6,017***(0)
Dépenses publiques-6,604***(0)-8,103***(0)-6,604***(0)-8,103***(0)
Ouverture commerciale-6,648***(0)-6,552***(0)-6,648***(0)-6,552***(0)
Taux d’investissement-6,418***(0)-6,337***(0)-6,418***(0)-6,337***(0)
TogoCroissance du PIB par tête-5,768***(0)-6,027***(0)-5,768***(0)-6,027***(0)
Inflation-3,956***(1)-3,877**(1)-4,252***(1)-4,299***(1)
Développement financier-7,182***(0)-7,969***(0)-7,182***(0)-7,969***(0)
Dépenses publiques-7,817***(0)-8,432***(0)-7,817***(0)-8,432***(0)
Ouverture commerciale-7,000***(0)-7,176***(0)-7,000***(0)-7,176***(0)
Taux d’investissement-8,187***(0)-8,305***(0)-8,187***(0)-8,305***(0)

Tests de stationnarité sur les variables

Source : estimations de l’auteur.
Tableau 6

Niveaux des seuils et intervalles de confiance

PaysSeuil 1Intervalle de confianceSeuil 2Intervalle de confiance
Bénin0,4[0,44 ; 3,98]1,3[0,87 ; 2,16]
Burkina Faso4,3[-0,40 ; 4,30]1,6[0,95 ; 2,16]
Côte d’Ivoire6,9[4,91 ; 6,93]1,3[1,24 ; 1,46]
Mali5,4[5,19 ; 8,94]1,8[1,41 ; 5,03]
Niger-1,6[-1,61 ; -0,77]4,0[2,94 ; 4,01]
Sénégal6,2[0,32 ; 6,20]0,0[-0,03 ; 0,14]
Togo7,5[0,20 ; 7,54]0,4[0,20 ; 0,85]

Niveaux des seuils et intervalles de confiance

Source : estimations de l’auteur.
Figure 2

Identification des seuils et des intervalles de confiance

Figure 2

Identification des seuils et des intervalles de confiance

figure im28
Source : estimations de l’auteur.
Tableau 7

Test de linéarité

H0 : absence de seuilH0 : absence de seuil (seuil 1)H0 : absence de seuil (seuil 2)
F testp-value du « bootstrap »F testp-value du « bootstrap »
Bénin11,9360,13010,2060,351
Burkina Faso11,2750,1989,2120,441
Côte d’Ivoire15,4800,00612,1280,074
Mali15,5780,00813,7850,007
Niger9,6770,26713,3370,019
Sénégal8,3030,68710,4610,238
Togo8,3440,65012,6010,039

Test de linéarité

Source : estimations de l’auteur.
Tableau 8

Résultats de l’estimation du modèle à effet de seuil pour le Bénin

Variable dépendante : croissance du PIB par têteSeuils d’inflation = 0,4 et 1,3
VariablesModèle linéaireModèle à effet de seuil
MCO sans seuilInflation ≤ 0,40,4 < Inflation ≤ 1,3Inflation > 1,3
Constante1,072 (0,489)4,541*** (0,259)0,568 (0,501)-0,154 (0,337)
Inflation-0,029 (0,085)-0,216*** (0,010)0,748* (0,370)0,234*** (0,065)
Investissement0,026 (0,101)-3,003*** (0,113)0,251* (0,122)-0,039 (0,074)
Ouverture commerciale0,261*** (0,065)1,505*** (0,051)0,357*** (0,078)-0,082 (0,047)
Développement financier0,037 (0,160)2,921*** (0,122)-0,356* (0,170)-0,206 (0,164)
Dépenses du gouvernement0,059 (0,211)0,624*** (0,044)1,335* (0,656)0,238 (0,235)
Observations3781118
R20,3230,9820,8580,391
Somme des carrés des résidus199,550111,52746,664
R2 joint0,6220,787

Résultats de l’estimation du modèle à effet de seuil pour le Bénin

Source : estimations de l’auteur (les nombres entre parenthèses sont les écarts-types).
Tableau 9

Résultats de l’estimation du modèle à effet de seuil pour le Burkina Faso

Variable dépendante : croissance du PIB par têteSeuils d’inflation = 1,6 et 4,3
VariablesModèle linéaireModèle à effet de seuil
MCO sans seuilInflation ≤ 1,61,6 < Inflation ≤ 4,3Inflation > 4,3
Constante2,045*** (0,651)0,776 (0,447)5,177*** (0,227)2,563*** (0,739)
Inflation0,012 (0,120)0,614* (0,287)-0,151*** (0,019)0,000 (0,182)
Investissement0,257 (0,160)0,956** (0,357)0,0117 (0,026)0,230* (0,124)
Ouverture commerciale-0,170 (0,153)0,143 (0,090)-0,170** (0,040)-0,733** (0,253)
Développement financier-0,036 (0,229)-0,251 (0,229)-0,262*** (0,040)0,239 (0,281)
Dépenses du gouvernement-0,052 (0,229)-0,727* (0,359)-0,376*** (0,063)0,561*** (0,124)
Observations37131014
R20,0850,6900,9110,526
Somme des carrés des résidus309,32025,162204,402
R2 joint0,8520,396

Résultats de l’estimation du modèle à effet de seuil pour le Burkina Faso

Source : estimations de l’auteur.
Tableau 10

Résultats de l’estimation du modèle à effet de seuil pour la Côte d’Ivoire

Variable dépendante : croissance du PIB par têteSeuils d’inflation = 1,3 et 6,9
VariablesModèle linéaireModèle à effet de seuil
MCO sans seuilInflation ≤ 1,31,3 < Inflation ≤ 6,9Inflation > 6,9
Constante0,258 (0,744)-1,353** (0,418)-1,424** (0,519)29,962*** (3,099)
Inflation-0,248++ (0,177)2,743** (0,563)0,000 (0,083)-3,305*** (0,359)
Investissement0,660*** (0,123)0,116 (0,084)0,581*** (0,109)3,370*** (0,329)
Ouverture commerciale-0,114 (0,102)-0,586*** (0,099)-0,049 (0,052)1,581** (0,193)
Développement financier-0,040 (0,344)0,683* (0,242)0,546** (0,187)0,425 (0,388)
Dépenses du gouvernement0,223 (0,337)1,459** (0,325)-0,212 (0,217)-2,789** (0,555)
Observations379208
R20,3790,9220,6590,957
Somme des carrés des résidus460,30070,134209,251
R2 joint0,8320,717

Résultats de l’estimation du modèle à effet de seuil pour la Côte d’Ivoire

Source : estimations de l’auteur.
Tableau 11

Résultats de l’estimation du modèle à effet de seuil pour le Mali

Variable dépendante : croissance du PIB par têteSeuils d’inflation = 1,8 et 5,4
VariablesModèle linéaireModèle à effet de seuil
MCO sans seuilInflation ≤ 1,81,8 < Inflation ≤ 5,4Inflation > 5,4
Constante1,475** (0,845)0,295 (0,753)5,821** (2,202)2,849*** (0,531)
Inflation-0,045 (0,119)0,617*** (0,180)0,000 (0,175)-0,260*** (0,051)
Investissement-0,343* (0,193)0,851** (0,271)0,963** (0,311)-0,598*** (0,030)
Ouverture commerciale-0,061 (0,128)0,052 (0,148)-0,277 (0,276)0,011 (0,039)
Développement financier-0,283 (0,308)0,701 (0,483)-0,608 (0,451)0,167 (0,067)
Dépenses du gouvernement0,525 (0,424)-2,269*** (0,660)0,104 (0,317)1,501*** (0,059)
Observations37151111
R20,1840,6670,7340,982
Somme des carrés des résidus724,102134,180371,242
R2 joint0,7050,581

Résultats de l’estimation du modèle à effet de seuil pour le Mali

Source : estimations de l’auteur.
Tableau 12

Résultats de l’estimation du modèle à effet de seuil pour le Niger

Variable dépendante : croissance du PIB par têteSeuils d’inflation = 1,6 et 4,0
VariablesModèle linéaireModèle à effet de seuil
MCO sans seuilInflation ≤ 1,61,6 < Inflation ≤ 4,0Inflation > 4,0
Constante-1,172* (0,602)-4,820** (0,983)0,083 (0,462)7,548*** (0,744)
Inflation0,027 (0,065)0,000 (0,367)0,000 (0,131)-0,498*** (0,045)
Investissement0,841*** (0,222)1,355** (0,262)0,841*** (0,168)-0,381*** (0,063)
Ouverture commerciale-0,400*** (0,139)-0,023 (0,466)-0,401*** (0,080)1,241*** (0,093)
Développement financier0,166 (0,255)-2,358 (1,414)0,110 (0,220)-0,251 (0,226)
Dépenses du gouvernement-0,488 (0,327)-0,371 (0,450)-0,994*** (0,310)2,462*** (0,334)
Observations378209
R20,4610,8660,6310,953
Somme des carrés des résidus464,520204,63693,805
R2 joint0,7280,650

Résultats de l’estimation du modèle à effet de seuil pour le Niger

Source : estimations de l’auteur.
Tableau 13

Résultats de l’estimation du modèle à effet de seuil pour le Sénégal

Variable dépendante : croissance du PIB par têteSeuils d’inflation = 0,0 et 6,2
VariablesModèle linéaireModèle à effet de seuil
MCO sans seuilInflation ≤ 0,00,0 < Inflation ≤ 6,2Inflation > 6,2
Constante0,784 (0,493)0,166 (0,590)1,664*** (0,525)2,736** (0,572)
Inflation-0,152* (0,080)0,523* (0,180)0,000 (0,075)-0,622** (0,070)
Investissement0,364** (0,141)0,701*** (0,057)0,312 (0,195)0,940** (0,114)
Ouverture commerciale-0,167** (0,071)-0,416** (0,050)-0,217** (0,081)-0,270** (0,034)
Développement financier-0,182 (0,214)-0,505 (0,302)-0,100 (0,183)-1,170** (0,170)
Dépenses du gouvernement-1,160*** (0,404)2,618** (0,511)-1,335** (0,634)-0,882** (0,145)
Observations378218
R20,3980,9220,4820,967
Somme des carrés des résidus169,60756,337107,699
R2 joint0,6360,618

Résultats de l’estimation du modèle à effet de seuil pour le Sénégal

Source : estimations de l’auteur.
Tableau 14

Résultats de l’estimation du modèle à effet de seuil pour le Togo

Variable dépendante : croissance du PIB par têteSeuils d’inflation = 0,4 et 7,5
VariablesModèle linéaireModèle à effet de seuil
MCO sans seuilInflation ≤ 0,40,4 < Inflation ≤ 7,5Inflation > 7,5
Constante-0,876 (0,749)5,221*** (0,877)-1,787** (0,839)-0,619 (1,612)
Inflation0,154 (0,121)4,422*** (0,674)0,545*** (0,079)-0,380* (0,184)
Investissement-0,061 (0,255)0,850** (0,253)-0,358*** (0,079)2,213** (0,431)
Ouverture commerciale0,159* (0,091)0,609** (0,117)-0,014 (0,076)0,477* (0,124)
Développement financier-0,151 (0,191)-2,308** (0,619)0,315* (0,166)1,002 (0,691)
Dépenses du gouvernement-0,556 (0,424)1,216** (0,325)0,215 (0,405)-5,180* (1,437)
Observations379208
R20,1970,9210,6460,843
Somme des carrés des résidus898,123201,488554,540
R2 joint0,7640,504

Résultats de l’estimation du modèle à effet de seuil pour le Togo

Source : estimations de l’auteur.
Tableau 15

Tests d’exogénéité de Wald sur la variable « inflation »

PaysFischer (1, 31)Khi-deux (1)Exogénéité (H0) à 95%
ValeurProbabilitéValeurProbabilité
Bénin0,20170,65650,20170,6533Exogène
Burkina Faso0,01000,92080,01000,9202Exogène
Côte d’Ivoire2,76040,10672,76040,0966Exogène
Mali0,11070,74160,11070,7394Exogène
Niger0,10410,74910,10410,7469Exogène
Sénégal3,34650,07703,34650,0673Exogène
Togo1,24390,27331,24390,2647Exogène

Tests d’exogénéité de Wald sur la variable « inflation »

Source : estimations de l’auteur.

Bibliographie

Références

  • I. S. Abdullahi et S. Bawa [2012] : Threshold Effect of Inflation on Economic Growth in Nigeria, CBN Journal of Applied Statistics, vol. 3, n°1, pp. 43-63.
  • C. R. K. Ahortor, A. Adenekan et W. Ohemeng [2011] : An Estimate of Inflation Threshold in the WAMZ : The Case of Ghana and Nigeria, Journal of Monetary and Economic Integration, vol. 11, n°2, pp. 158-201.
  • N. Arcade, N. E. Osoro et A. Kidane [2016] : Threshold Effects of Inflation on Economic Growth in Selected African Regional Economic Communities : Evidence from a Dynamic Panel Threshold Modeling, Applied Econometrics, vol. 41, pp. 5-23.
  • D. Baglan et E. Yoldas [2014] : Non-linearity in the Inflation-Growth Relationship in Developing Economies : Evidence from a Semiparametric Panel Model, Economics Letters, 125, pp. 93-96.
  • Banque mondiale [2017] : World Development Indicators, www.worldbank.org
  • R. J. Barro [1996] : Inflation and Growth, Federal Reserve Bank of St. Louis Review, mai/juin.
  • R. J. Barro et X. Sala-i-Martin [1995] : Economic Growth, McGraw Hill.
  • M. Ben Salem et C. Perraudin [2001] : Tests de linéarité, spécification et estimation de modèles à seuil : une analyse comparée des méthodes de Tsay et de Hansen, Économie & prévision, 2001/2, n°148, pp. 157-176.
  • T. P. Bhusal et S. Silpakar [2011] : Growth and Inflation : Estimation of Threshold Point for NEPAL, Economic Journal of Development Issues, vol. 13 et 14, n°1-2, pp. 131-138.
  • A. Bick [2010] : Threshold Effects of Inflation on Economic Growth in Developing Countries, Economics Letters, 108, pp. 126-129.
  • M. Bittencourt, M. Seleteng et R. van Eyden [2013] : Non-Linearities in Inflation-Growth Nexus in the SADC Region : A panel Smooth Transition Regression Approach, Economic Modelling, 30, pp. 149-156.
  • A. Combey et K. Nubukpo [2011] : Effets non linéaires de l’inflation sur la croissance dans l’UEMOA, Communication présentée au colloque Dynamiques de croissance au sein de l’Union économique et monétaire ouest-africaine (UEMOA), Ouagadougou, juillet.
  • A. Drazen [1979] : The Optimal Rate of Inflation Revisited, Journal of Monetary Economics, 5, pp 231-248.
  • J. C. Eggoh et M. Khan [2014] : On the Nonlinear Relationship between Inflation and Economic Growth, Research in Economics, 68, pp. 133-143.
  • R. Espinoza, H. Leon et A. Prasad [2010] : Estimating the Inflation-Growth Nexus-A Smooth Transition Model, IMF Working Paper, WP/10/76.
  • S. Fischer [1993] : The Role of Macroeconomic Factors in Growth, Journal of Monetary Economics, 32, pp. 485-512.
  • F.M.I [2010] : World Economic Outlook Database, www.imf.org
  • H. Fuchi, N. Oda et H. Ugai [2008] : Optimal Inflation for Japan’s Economy, J. Japanese Int. Economies, 22, pp 439-475.
  • F. Furuoka, K. Mansur et Q. Munir [2009] : Inflation and Economic Growth in Malaysia : A Threshold Regression Approach, ASEAN Economic Bulletin, vol. 26, n°2, pp. 180-193.
  • A. Gonzàlez, T. Teräsvirta et D. van Dijk [2005] : Panel Smooth Transition Regression Models, SSE/EFI Working Paper Series in Economics and Finance, n°604.
  • L. Graham et D. Snower [2004] : The Real Effects on Money Growth in Dynamic General Equilibrium, European Central Bank, working paper 412.
  • B. E. Hansen [1996] : Inference when a Nuisance Parameter is not Identified under the Null Hypothesis, Econometrica, 64, pp. 413-430.
  • B. E. Hansen [2000] : Sample Splitting and Threshold Estimation, Econometrica, vol. 68, n°3, pp. 575-603.
  • F. Hasanov [2011] : Relationship between Inflation and Economic Growth in Azerbaijani Economy : Is There Any Threshold Effect ?, Asian Journal of Business and Management Sciences, vol. 1, n°1, pp. 1-11.
  • M. Hussain [2005] : Inflation and Growth : Estimation of Threshold Point for Pakistan, Pakistan Bank Review, octobre.
  • R. Ibarra et D. R. Trupkin [2016] : Reexamining the Relationship between Inflation and Growth : Do Institutions matter in Developing Countries ?, Economic Modelling, 52, pp. 332-351.
  • E. Ö. Kan et T. Omay [(2010] : Re-examining the Threshold Effects in the Inflation-Growth Nexus with Cross-Sectionally Dependent Non-linear Panel : Evidence from six Industrialized Economies, Economic Modelling, 27, pp. 996-1005.
  • I. Kelikume et D. Salami [2010] : An Estimation of Inflation Threshold for Nigeria 1970-2008, International Review of Business Research Papers, vol. 6, n°5, pp. 375-385.
  • M. S. Khan et A. S. Senhadji [2001] : Threshold Effects in the Relationship between Inflation and Growth, International Monetary Fund, IMF Staff Papers, vol. 48, n°1, pp. 1-21.
  • S. Kremer, A. Bick et D. Nautz [2013] : Inflation and Growth : New Evidence from a Dynamic Panel Threshold Analysis, Empirical Economics, 44 (2), pp. 861-878.
  • C. Lee et S. Y. Wong [2005] : Inflationary Threshold Effects in the Relationship between Financial Development and Economic Growth : Evidence from Taiwan and Japan, Journal of Economic Development, vol. 30, n°1, pp. 49-69.
  • A. López-Villavicencio et V. Mignon [2011] : On the Impact of Inflation on Output Growth : Does the Level of Inflation matter ?, Journal of Macroeconomics, 33 (3), pp. 455-464.
  • G. Marbuah [2011] : On the Inflation-Growth Nexus : Testing for Optimal Inflation for Ghana, Journal of Monetary and Economic Integration, vol. 11, n°2, pp. 54-82.
  • D. Mohanty, A. B. Chakraborty, A. Das et J. John [2011] : Inflation Threshold in India : An Empirical Investigation, Reserve Bank of India, working paper series 18.
  • Y. A. Mubarik [2005] : Inflation and Growth : An Estimate of the Threshold Level of Inflation in Pakistan, State Bank of Pakistan-Research Bulletin, vol. 1, n°1, pp. 35-44.
  • I. Nasir et N. Saima [2010] : Investment, Inflation and Economic Growth Nexus, Pakistan Instittute of Development Economics Islamabad Pakistan, MPRA Paper n° 27163.
  • I. M. M. M. Ndjokou et P. C. Tsopmo [2017] : Non-linéarité entre inflation et croissance économique : quels enseignements pour la zone BEAC ?, Revue d’économie du développement, n°2017/2, vol. 25, pp. 41-62.
  • J.-P. Pollin [2008] : Maitriser l’inflation : avec quels objectifs et quelles stratégies ?, Revue économique et monétaire, n°4, pp. 9-34.
  • D. Powers [2005] : Inside Money and the Effects of Inflation, Journal of Macroeconomics, 27, pp. 494-516.
  • P. L. Rousseau et P. Wachtel [2002] : Inflation Thresholds and the Finance-Growth Nexus, Journal of International Money and Finance, 21, pp. 777-793.
  • M. Sarel [1996] : Nonlinear Effects of Inflation on Economic Growth, Staff Papers International Monetary Fund, vol. 43, n°1, pp. 199-215.
  • S. Schiavo et A. Vaona [2007] : Nonparametric and Semiparametric Evidence on the Long-Run Effects of Inflation on Growth, Economics Letters, 94, pp. 452-458.
  • S. Schmitt-Grohé et M. Uribe [2011] : The Optimal Rate of Inflation, North-Holland Handbook of Monetary Economics, vol. 3, B. M. Friedman et M. Woodford (eds.).
  • A. Sepehri et S. Moshiri [2004] : Inflation-Growth Profils Across Countries : Evidence from Developping and Developped Countries, International Review of Applied Economics, 18, pp. 191-207.
  • P. Singh [2010] : Searching Threshold Inflation for India, Economics Bulletin, vol. 30, n°4, pp. 3209-3220.
  • M. Sidrauski [1967] : Inflation and Economic Growth, Journal of Political Economy, vol. 75, n°6, pp. 796-810.
  • A. Stockman [1981] : Anticipated Inflation and the Capital Stock in a Cash-in-Advance Economy, Journal of Monetary Economics, vol. 8(3), pp. 387-393.
  • J. Temple [2000] : Inflation and Growth : Stories Short and Tall, Journal of Economic Surveys, vol. 14, n°4, pp. 395-426.
  • T. Teräsvirta [1994] : Specification, Estimation and Evaluation of Smooth Transition Autoregressive Models, Journal of the American Statistical Association, vol. 89, pp. 208-218.
  • S. D. Thanh [2015] : Threshold Effects of Inflation on Growth in the ASEAN-5 Countries : A Panel Smooth Transition Regression approach, Journal of Economics, Finance and Administrative Science, 20, pp. 41-48.
  • J. Tobin [1965] : Money and Economic Growth, Econometrica, 33 (4), pp. 671-684.
  • A. Vaona [2012] : Inflation and Growth in the Long Run : A New Keynesian Theory and Further Semiparametric Evidence, Macroeconomic Dynamic, vol. 16, pp. 94-132.
  • T. Vinayagathasan [2013] : Inflation and Economic Growth : A Dynamic Panel Threshold Analysis for Asian Economies, Journal of Asian Economics, 26, pp. 31-41.
  • A. Yakita [1989] : The Optimal Rate of Inflation and Taxation, Journal of Public Economics, 38, pp. 369-385.

Notes

  • [1]
    Union économique et monétaire ouest-africaine, regroupant le Bénin, le Burkina Faso, la Côte d’Ivoire, la Guinée Bissau (depuis 1997), le Mali, le Niger, le Sénégal et le Togo.
  • [2]
    En vue d’affiner la régulation conjoncturelle, il est aussi associé au niveau à partir duquel les effets de l’inflation sur l’activité économique deviennent négatifs.
  • [3]
    En supposant que la monnaie est un substitut au capital, le modèle de Tobin [1965] souligne un mécanisme de substitution de portefeuille par lequel l’inflation réduit le rendement de la détention d’encaisses réelles. Ainsi, Tobin soutient que l’inflation réduit le taux d’intérêt et, par conséquent, le coût d’opportunité à investir. Ce qui rend le capital plus attractif à détenir que la monnaie, poussant ainsi les individus à substituer la monnaie au capital. Compte tenu de la constance supposée du taux d’épargne par le modèle, cela se traduit par un accroissement de l’accumulation du capital qui entraîne une hausse de la production et, donc, la croissance économique.
  • [4]
    À travers un modèle d’optimisation inter-temporelle avec une offre de travail rigide où les encaisses réelles sont prises en compte dans la fonction d’utilité des agents, Sidrauski montre que le taux de croissance monétaire et le taux d’inflation n’ont aucun effet sur l’économie réelle, c’est-à-dire le stock de capital, la production et le taux d’intérêt réels.
  • [5]
    Stockman [1981] considère un modèle à encaisses préalables où la monnaie est complémentaire du capital et montre qu’une hausse de l’inflation se traduit par une baisse du niveau d’équilibre de la production. Il construit son argumentaire en supposant que les entreprises augmentent leurs encaisses pour le financement de leurs projets. Il modélise cet investissement numéraire comme une baisse anticipée des décisions de consommation et d’investissement. Quand le taux d’inflation augmente, les agents économiques sont contraints à réduire leurs achats de marchandises et leur détention de capital puisque l’inflation érode leur pouvoir d’achat. Par conséquent, la production d’équilibre diminue en réponse à la hausse du taux d’inflation qui, in fine, affecte négativement la croissance économique.
  • [6]
    Considérant les modèles AK, l’inflation agit comme une taxe sur le capital physique qui réduit le taux de rendement du capital qui, à son tour, réduit la croissance. Quant aux modèles AH, l’inflation agit comme une taxe sur le capital humain et affecte également le taux de croissance de la production : elle conduit à une substitution entre les biens et le loisir, ce qui abaisse le rendement du capital humain qui, à son tour, conduit à baisser le rendement sur tout le capital et donc le taux de croissance économique.
  • [7]
    Dans ce cadre, il montre que la hausse de l’inflation rend les prix relatifs plus volatils et les salaires réels plus variables pendant la période contractuelle parce que le salaire nominal est constant sur la période contractuelle alors que le niveau général des prix augmente graduellement dans le temps. Cette volatilité du salaire réel entraîne des fluctuations sur le marché de l’emploi qui sont susceptibles de se traduire par une baisse des rendements du travail, conduisant à une inefficacité sur le marché du travail, une réduction du produit marginal du capital et, par conséquent, à un ralentissement de la croissance économique.
  • [8]
    L’effet cyclique sur le marché du travail est dû au fait que les entreprises se substituent à différents types de travail parce que les agents appartenant à des cohortes différentes ont des salaires différents, certains d’entre eux étant liés à des contrats antérieurs.
  • [9]
    Dans les pays développés, les résultats concernant le taux optimal d’inflation ont été obtenus grâce aux simulations DSGE des modèles keynésiens et à la controverse autour de l’optimalité de « la règle de Friedman » (Schmitt-Grohé et Uribe [2010]). Ces études ont été faites à travers des modèles macroéconomiques dont certains sont à agent représentatif.
  • [10]
    La caractéristique essentielle de la méthode de Sarel [1996] est l’utilisation des moindres carrés ordinaires pour déterminer le point de rupture structurelle de la fonction qui relie la croissance économique et l’inflation. La méthode de Khan et Senhadji [2001] se caractérise essentiellement par la nature inconnue du seuil d’inflation et son estimation avec les autres paramètres de régression par les moindres carrés non linéaires.
  • [11]
    Notons que lorsque la variable seuil est plus petite que la valeur du seuil, le modèle estime l’équation (2). De manière similaire, lorsque la variable seuil est plus grande que le paramètre seuil, le modèle estime l’équation (3).
  • [12]
    Cela traduit un effet de type keynésien qui préconise l’existence d’une relation positive entre l’inflation et la croissance, de sorte que, même s’il y a une hausse des prix des biens suite à une politique monétaire expansionniste, la production ne devrait pas baisser car les producteurs doivent satisfaire les exigences de demande des consommateurs.
  • [13]
    Il traduit dans ce cas un effet de type monétariste qui considère que l’inflation est nuisible au progrès économique.
  • [14]
    L’hypothèse nulle d’absence d’effet de seuil (H0 : α1i = α2i avec i = 0,…,4) est testée contre l’hypothèse alternative ou l’effet de seuil est présent (H1 : α1iα2i). Les procédures classiques des tests d’hypothèses ne peuvent pas être appliquées car, sous l’hypothèse nulle d’absence d’effet de seuil, le paramètre seuil serait non identifié.
  • [15]
    Pour cela, il convient d’abord d’utiliser la statistique F1 pour évaluer l’hypothèse nulle d’absence de seuil. Si cette hypothèse nulle est rejetée, alors il existe au moins une valeur seuil. L’étape suivante consistera à tester l’hypothèse nulle d’un seuil contre deux seuils.
  • [16]
    Les résultats de ces tests ont montré que la croissance et l’inflation sont stationnaires en niveau pour tous les pays. Cependant, les autres variables sont pour la plupart des cas intégrées d’ordre 1. Ainsi, pour plus de simplicité et de cohérence et pour ne pas être confronté à des résultats erronés, toutes les variables ont été rendues stationnaires en tenant compte de leur différence première. Les résultats des tests de stationnarité sont présentés en annexe.
  • [17]
    La valeur critique du ratio de vraisemblance (7,35), qui est significative à 95 %, est représentée par la ligne horizontale de sorte que l’intervalle de confiance du seuil optimal d’inflation peut être lu à partir de l’endroit où la courbe du ratio de vraisemblance franchit la valeur critique.
  • [18]
    Les performances du modèle non linéaire sont nettement meilleures que celles du modèle linéaire. En effet, la significativité globale du modèle est meilleure sous la forme d’une spécification à deux régimes que sous la forme linéaire (voir R2 et « somme des carrés des résidus » des tableaux de résultats en annexe).
  • [19]
    Ce passage d’un régime à un autre pourrait être lisse dans ces pays. Selon Ben Salem et Perraudin [2001], les modèles à seuil à transition brutale sont un cas particulier des modèles à seuil à transition lisse proposés par Teräsvirta [1994].
  • [20]
    La valeur critique du ratio de vraisemblance (7,35), qui est significative à 95 %, est représentée par la ligne horizontale, de sorte que l’intervalle de confiance du seuil optimal d’inflation peut être lu à partir de l’endroit où la courbe du ratio de vraisemblance franchit la valeur critique.
bb.footer.alt.logo.cairn

Cairn.info, plateforme de référence pour les publications scientifiques francophones, vise à favoriser la découverte d’une recherche de qualité tout en cultivant l’indépendance et la diversité des acteurs de l’écosystème du savoir.

Avec le soutien de

Retrouvez Cairn.info sur

18.97.14.83

Accès institutions

Rechercher

Toutes les institutions